wikiroute

networking recipes

User Tools

Site Tools


deploying_lorawan

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
Next revisionBoth sides next revision
deploying_lorawan [2017/04/30 12:59] – [1.2. Arduino with Dragino Shield] samerdeploying_lorawan [2017/04/30 16:28] – [Deploying an End-to-End LoRaWAN Platform] samer
Line 1: Line 1:
 ====== Deploying an End-to-End LoRaWAN Platform ====== ====== Deploying an End-to-End LoRaWAN Platform ======
  
-Starting from September 2016, Saint-Joseph University of Beirut (USJ) will be deploying the first academic [[http://www.semtech.com/wireless-rf/internet-of-things/what_is_lora.html | LoRa]] network in Lebanon. The network will support monitoring of micro-climate conditions in vineyards. Here below you can find a detailed description of the experimental platform implementing an end-to-end LoRaWAN solution.+Starting from September 2016, Saint-Joseph University of Beirut (USJ) will be deploying the first academic [[http://www.semtech.com/wireless-rf/internet-of-things/what_is_lora.html | LoRa]] network in Lebanon. The network will support monitoring of micro-climate conditions in vineyards. Here below you can find a detailed description of the experimental platform implementing an end-to-end LoRaWAN solution. The platform consists of the following elements:
  
-[{{ :e2e-lorawan.png?direct&750 | Figure 2Architecture of the LoRaWAN Platform}}]+  * Wireless devices with a sensing interface and a communication interface implementing the LoRaWAN protocol. 
 +  * Gateways or base stations that relay the radio frames to the IP backend. 
 +  * A LoRAWAN backend implementing the network server function. 
 +  * Application examples that enable to visualize and store the sensor data. 
  
 +[{{ :lora-pilot-architecture.png?direct&650 | Figure 2. Architecture of the LoRaWAN Platform}}]
 ===== -. Devices ===== ===== -. Devices =====
 ==== -. Autonomo with LoRaBee ==== ==== -. Autonomo with LoRaBee ====
  
-For the devices in the LoRaWAN platform, we will use an Autonomo board with a LoRaBee holding the Microchip RN2483 module. According to [[http://shop.sodaq.com]], Autonomo is a matchbox-sized powerhouse which uses the new Atmel Cortex M0+ 32bit micro controller. One advantage of such device is that it can be powered by a smartphone-sized solar panel.+Starting with the devices in the LoRaWAN platform, we will use an [[http://support.sodaq.com/sodaq-one/autonomо/|Autonomo]] board with a LoRaBee Microchip RN2483 module. According to [[http://shop.sodaq.com]], Autonomo is a matchbox-sized powerhouse which uses the new Atmel Cortex M0+ 32bit micro controller. One advantage of such device is that it can be powered by a smartphone-sized solar panel.
  
 In order to configure the Autonomo with LoRaBee device, you should follow these steps: In order to configure the Autonomo with LoRaBee device, you should follow these steps:
Line 18: Line 22:
 Now you are ready to write a sketch for the device. Here is one example sketch {{ :test-lorawan-combined-loraserver-example.zip |}} where the autonomo is connected to three sensors: light, moisture, and temperature. Let us analyse some extracts of the code. Now you are ready to write a sketch for the device. Here is one example sketch {{ :test-lorawan-combined-loraserver-example.zip |}} where the autonomo is connected to three sensors: light, moisture, and temperature. Let us analyse some extracts of the code.
  
-In this part, you should put the keys for Over-The-Air Activation (OTAA) as explained in the LoRaWAN specification: +In this part, you should put the keys for Over-The-Air Activation (OTAA) as explained in the {{ :lorawan102-20161012_1398_1.pdf |LoRaWAN specification}}
 <code c++> <code c++>
 // USE YOUR OWN KEYS! // USE YOUR OWN KEYS!
Line 36: Line 40:
 int light_pin = A0; int light_pin = A0;
 int moisture_pin = A2;  int moisture_pin = A2; 
- 
 int temperature_pin = 0; int temperature_pin = 0;
 int temperature_vcc_pin = 1; int temperature_vcc_pin = 1;
Line 43: Line 46:
 </code> </code>
  
-The OTAA method is used for joining the network and adaptive data rate is activated:+The OTAA method is used for joining the network and Adaptive Data Rate (ADR) is activated:
 <code c++> <code c++>
 LoRaBee.initOTA(loraSerial, devEUI, appEUI, appKey, true) LoRaBee.initOTA(loraSerial, devEUI, appEUI, appKey, true)
Line 60: Line 63:
 </code> </code>
  
-Finally, the message is sent in an unconfirmed uplink message:+Finally, the message containing the sensor values is sent in an unconfirmed uplink message:
 <code c++> <code c++>
 LoRaBee.send(1, (uint8_t*)message.c_str(), message.length()) LoRaBee.send(1, (uint8_t*)message.c_str(), message.length())
Line 66: Line 69:
 ==== -. Arduino with Dragino Shield ==== ==== -. Arduino with Dragino Shield ====
  
-Devices in the LoRaWAN platform can also be used on Arduino boards with Dragino shields as presented in [[simple_lora_prototype|Simple Prototype of LoRa Communications]]. In the latter reference, you can also find the basic steps for working with the IDE. Similarly to the Autonomo device, you can download the following sketch {{ :test-loraserver-comb-loraserver-dragino.zip |}} and modify according to your context and preferences. Do not forget to insert you keys for the OTAA join method.+Devices in the LoRaWAN platform can also be implemented on Arduino boards with Dragino shields. The combined module as well as the basic configuration steps are presented in [[simple_lora_prototype|Simple Prototype of LoRa Communications]]. As for the Autonomo device, you can download the following sketch {{ :test-loraserver-comb-loraserver-dragino.zip |}} and modify it according to your preferences. Below you can find somme commented extracts of the sketch.
  
 +The pin mapping corresponds to the Dragino electronic schematic:
 <code c++> <code c++>
 const lmic_pinmap lmic_pins = { const lmic_pinmap lmic_pins = {
Line 77: Line 81:
 </code> </code>
  
 +The send function is rescheduled TX_INTERVAL seconds after each transmission complete event: 
 <code c++> <code c++>
         case EV_TXCOMPLETE:         case EV_TXCOMPLETE:
Line 91: Line 96:
 </code> </code>
  
 +This send function is initially scheduled here:
 <code c++> <code c++>
-LMIC_setTxData2(1, (uint8_t*) buffer, message.length() , 0);+do_send(&sendjob);
 </code> </code>
  
 +The message containing the sensor values is transmitted on one of the radio channels (as in the Autonomo case):
 <code c++> <code c++>
-LMIC_setDrTxpow(DR_SF7,14);+LMIC_setTxData2(1(uint8_t*) buffer, message.length() , 0);
 </code> </code>
  
 +The adaptive data rate is not supported, and the spreading factor is configured as follows: 
 <code c++> <code c++>
-do_send(&sendjob);+LMIC_setDrTxpow(DR_SF7,14);
 </code> </code>
 ===== -. Gateways ===== ===== -. Gateways =====
deploying_lorawan.txt · Last modified: 2021/08/28 09:50 by samer