2026/01/30 02:35 1/4 iotlabs-dayl

loTLabs: Exploring LoRa Technology

As defined by Semtech, LoRa is a wireless technology developed to create the low-power, wide-area
networks (LPWANSs) required for machine-to-machine (M2M) and Internet of Things (IoT) applications.
The technology offers a very compelling mix of long range, low power consumption and secure data
transmission and is gaining significant traction in loT networks being deployed by wireless network
operators.

In the following, we present a prototype of LoRa communication between two wireless modules. This
enables to get basic insights on the implementation of the technology and prepares some advanced
prototypes and experimentations.

-. Hardware and Cost

e Arduino Uno or Mega (x2) for 10 USD.
e Dragino shields (x2) for 20 USD.
e 868 MHz Antenna (x2) for 5 USD.

-. Software

e RadioHead: The Packet Radio library for embedded microprocessors can be downloaded from
http://www.airspayce.com/mikem/arduino/RadioHead/ or from this direct link.

e Arduino IDE: Specific OS versions can be downloaded from
https://www.arduino.cc/en/Main/Software.

-. Compatibility

This tutorial is written for :

e Arduino IDE 1.6.9.

e RadioHead 1.61.

e Dragino hardware release v1.3.
e Mac 0S5 10.11.5.

Beware of the necessary modifications, if any of the previous specifications is not supported in your
case.

-. Installation

Start by plugging the Dragino shields on the Arduino devices and mounting the antennas as shown in
Fig. 1.

wikiroute - http://wiki.lahoud.fr/

http://www.semtech.com/wireless-rf/internet-of-things/what_is_lora.html
https://www.amazon.fr/SODIAL-ATmega2560-Microcontroleur-Arduino-Module/dp/B00OPO44UE/ref=sr_1_3?ie=UTF8&qid=1468680586&sr=8-3&keywords=arduino+mega
http://www.aliexpress.com/store/product/Long-distance-wireless-lora-shield-for-Arduino-Leonardo-UNO-Mega2560-Duemilanove-Due/1390863_32591527766.html
http://fr.farnell.com/rf-solutions/ant-8whip3h-sma/ant-868mhz-whip-hinged-sma-3dbi/dp/2305899?MER=BN-2305899
http://www.airspayce.com/mikem/arduino/RadioHead/
http://www.airspayce.com/mikem/arduino/RadioHead/RadioHead-1.61.zip
https://www.arduino.cc/en/Main/Software

Last update: 2017/10/07 14:23 iotlabs-day1 http://wiki.lahoud.fr/doku.php?id=iotlabs-dayl&rev=1507379033

Figure 1. Arduino with LoRa Dragino shield.

Connect the two Arduino devices to USB ports on your computer. If this is the first time you use
Arduino IDE, make sure to install the necessary USB drivers by selecting Tools > Boards Manager
and installing Arduino AVR boards.

Now, you have to select the corresponding Board and Port in the Tools menu to program your
Arduino. For example, you can use the following:

e For Arduino Uno: Board = Arduino/Genuino Uno Mega, Port = /dev/cu.wchusbserial1420.
e For Arduino Mega: Board = Arduino/Genuino Mega 2560, Port = /dev/cu.usbmodem141511.

Unzip the RadioHead library and copy it to your sketchbook library folder as detailed in
https://www.arduino.cc/en/Guide/Libraries.

| For Arduino Mega 2560, additional drivers can be installed
& from http://wch.cn/download/CH341SER_ZIP.html.

-. Running Basic Sketches

Start by setting the central frequency of the LoRa modules. For this, open the RH_RF95. cpp file
locate in the RadioHead folder and change the frequency to 868.1 Mhz:

RH_RF95.cpp

setFrequency(868.1);

Download the

basic sketches
that implement a reliable LoRa communication between the two modules. Open the sketches with
Arduino IDE, compile and upload on the two arduino modules, respectively. On the serial interfaces,
you should obtain similar results as in Fig. 2 and Fig. 3. The client sends a Hello World! message
and waits for an acknowledgement message from the server. Both modules output the RSSI (received

http://wiki.lahoud.fr/ Printed on 2026/01/30 02:35

http://wiki.lahoud.fr/lib/exe/detail.php?id=iotlabs-day1&media=dragino-arduino-mega.jpg
https://www.arduino.cc/en/Guide/Libraries
http://wch.cn/download/CH341SER_ZIP.html
http://wiki.lahoud.fr/doku.php?do=export_code&id=iotlabs-day1&codeblock=0
http://wiki.lahoud.fr/lib/exe/fetch.php?media=client-server-reliable-lora.zip

2026/01/30 02:35 3/4 iotlabs-dayl

power in dBm) for each received message.

sending to rf¥_reliable_dotogrom_server
got reply from ; @ui: a&nd hello bock to you
Fal

Sending to rf9%S_reliaoble_dotogrom_server
got reply from @ @xZ: &nd hello back to wou
-22

Sending to rfIS_reliable_dotogram_server
got reply From | @xZ: &ad hello bock to wou
-22

Sending to rfIS_reliable_dotagram_server
got reply from @ @xZ: And helle bock to you
[4

Sending to rf9S_reliable_datogram_server
got reply from ; @uf: and hello bock to wou

&2

+| Autoscrall Mewline - 00 baud s

&
Figure 2. Client serial monitor

got request from ;o Bxl: Hello World]
Sending: And hello bock to you

3
got request from : @xl: Wello World!
Sending: And hella back to you

-33
got reguest from @ Bxl: Hello World!
Sending: And hello back to you

-3
got request from @ Bxl: Hello World!
sending: And hello back to you

: i
got request from @ Bxl: Wello World)
Sending: And hello bock to you

15

+| Autoscrall Mewline - 00 baud s

&
Figure 3. Server serial monitor

-. Modifying the Radio Parameters

The typical configuration for LoRa modules consists of 125 KHz sub-channels, a coding rate of 4/5,
and a spreading factor equal to 7. This configuration ensures higher data rates but is more vulnerable
in case of harsh radio conditions. If you want to ensure more robustness to noise on the radio channel
or extend the coverage, you may change the module configuration to a stronger coding rate of 4/8
and a spreading factor of 12. This obviously comes at the expense of lower data rates! The procedure
is explained in the following.

Start by modifying the modem config in RH_RF95. cpp:

RH_RF95.cpp

//setModemConfig(Bw125Cr455f128); // Radio default
setModemConfig (Bwl25Cr48Sf4096); // slow and reliable?

wikiroute - http://wiki.lahoud.fr/

http://wiki.lahoud.fr/lib/exe/fetch.php?media=client-radiohead.png
http://wiki.lahoud.fr/lib/exe/fetch.php?media=client-radiohead.png
http://wiki.lahoud.fr/lib/exe/fetch.php?media=server-radiohead.png
http://wiki.lahoud.fr/lib/exe/fetch.php?media=server-radiohead.png
http://wiki.lahoud.fr/doku.php?do=export_code&id=iotlabs-day1&codeblock=1

Last update: 2017/10/07 14:23 iotlabs-day1 http://wiki.lahoud.fr/doku.php?id=iotlabs-dayl&rev=1507379033

As the data rate is lower, you may need to increase the timeout before declaring a lost transmission.
For this, you add a variable in RH_LONG TIMEOUT.h that equals 8 seconds and set the equivalent
timeout in RHReliableDatagram. cpp as shown hereafter.

RHReliableDatagram.h

#define RH_LONG TIMEOUT 8000

RHReliableDatagram.cpp

RHReliableDatagram: :RHReliableDatagram(RHGenericDriver& driver, uint8 t

thisAddress
: RHDatagram(driver, thisAddress

_retransmissions = 0;
_lastSequenceNumber = 0;

// timeout = RH DEFAULT TIMEOUT,
_timeout = RH_LONG TIMEOUT;
_retries = RH DEFAULT RETRIES;

I RHReliableDatagram class introduces acknowledgement
- messages. It may be preferable to use the basic class
RH_RF95 in this simple prototype.

From:
http://wiki.lahoud.fr/ - wikiroute

Permanent link:
http://wiki.lahoud.fr/doku.php?id=iotlabs-dayl&rev=1507379033

Last update: 2017/10/07 14:23

http://wiki.lahoud.fr/ Printed on 2026/01/30 02:35

http://wiki.lahoud.fr/doku.php?do=export_code&id=iotlabs-day1&codeblock=2
http://wiki.lahoud.fr/doku.php?do=export_code&id=iotlabs-day1&codeblock=3
http://wiki.lahoud.fr/
http://wiki.lahoud.fr/doku.php?id=iotlabs-day1&rev=1507379033

	IoTLabs: Exploring LoRa Technology
	-. Hardware and Cost
	-. Software
	-. Compatibility
	-. Installation
	-. Running Basic Sketches
	-. Modifying the Radio Parameters

