
2025/09/18 12:20 1/8 Deploying an End-to-End LoRaWAN Platform

wikiroute - https://wiki.lahoud.fr/

Deploying an End-to-End LoRaWAN Platform

Starting from September 2016, Saint-Joseph University of Beirut (USJ) will be deploying the first
academic LoRa network in Lebanon. The network will support monitoring of micro-climate conditions
in vineyards. Here below you can find a detailed description of the experimental platform
implementing an end-to-end LoRaWAN solution. The platform consists of the following elements:

Devices that communicate to one or more gateways via a wireless interface using single hop
LoRa and implementing the LoRaWAN protocol. These devices are physically connected to
sensors that generate data.
Gateways or base stations that forward frames between the devices and the network server.
Gateways are connected to the network server via IP interfaces.
A LoRAWAN backend that implements the network server functions and provides frame control
and security.
Applications that enable to visualize and store the sensor data obtained from the devices.

Figure 1. Architecture of the LoRaWAN Platform

1. Devices

1.1 Autonomo with LoRaBee

Starting with the devices in the LoRaWAN platform, we will use an Autonomo board with a LoRaBee
Microchip RN2483 module. According to http://shop.sodaq.com, Autonomo is a matchbox-sized
powerhouse which uses the new Atmel Cortex M0+ 32bit micro controller. One advantage of such
device is that it can be powered by a smartphone-sized solar panel.

In order to configure the Autonomo with LoRaBee device, you should follow these steps:

Verify that you have the latest Arduino IDE from https://www.arduino.cc/en/Main/Software on1.
your computer.
Install the board files as noted in http://support.sodaq.com/sodaq-one/autonomо/getting-2.
started-autonomo/.
Add the following library3.

sodaq_rn2483_2.zip

http://www.semtech.com/wireless-rf/internet-of-things/what_is_lora.html
https://wiki.lahoud.fr/lib/exe/fetch.php?media=lora-pilot-architecture.png
https://wiki.lahoud.fr/lib/exe/fetch.php?media=lora-pilot-architecture.png
http://support.sodaq.com/sodaq-one/autonomо/
http://shop.sodaq.com
https://www.arduino.cc/en/Main/Software
http://support.sodaq.com/sodaq-one/autonomо/getting-started-autonomo/
http://support.sodaq.com/sodaq-one/autonomо/getting-started-autonomo/
http://support.sodaq.com/sodaq-one/autonomо/getting-started-autonomo/
http://support.sodaq.com/sodaq-one/autonomо/getting-started-autonomo/

Last update: 2021/08/28 09:50 deploying_lorawan https://wiki.lahoud.fr/doku.php?id=deploying_lorawan

https://wiki.lahoud.fr/ Printed on 2025/09/18 12:20

to your Arduino IDE as explained in https://www.arduino.cc/en/guide/libraries.

Now you are ready to write a sketch for the device. Here is one example sketch

test-lorawan-combined-loraserver-example.zip
where the autonomo is connected to three sensors: light, moisture, and temperature. Let us analyse
some extracts of the code.

In this part, you should put the keys for Over-The-Air Activation (OTAA) as explained in the

LoRaWAN specification
:

// USE YOUR OWN KEYS!
const uint8_t devEUI[8] =
{ };

// USE YOUR OWN KEYS!
const uint8_t appEUI[8] =
{ };

const uint8_t appKey[16] =
{ };

The pins for connecting the sensors are specified in these declarations (A0 for light sensor, A2 for
moisture sensor, and D0 temperature sensor):

int light_pin = A0;
int moisture_pin = A2;
int temperature_pin = 0;
int temperature_vcc_pin = 1;
int moisture_vcc_pin = 8;
int moisture_gnd_pin = 7;

The OTAA method is used for joining the network and Adaptive Data Rate (ADR) is activated:

LoRaBee.initOTA(loraSerial, devEUI, appEUI, appKey, true)

Eight different sub channels are activated with data rate ranges from 0 to 5:

LoRaBee.configChFreq(0, 868100000L,0,5,1);
LoRaBee.configChFreq(1, 868300000L,0,5,1);
LoRaBee.configChFreq(2, 868500000L,0,5,1);
LoRaBee.configChFreq(3, 867100000L,0,5,1);
LoRaBee.configChFreq(4, 867300000L,0,5,1);
LoRaBee.configChFreq(5, 867500000L,0,5,1);
LoRaBee.configChFreq(6, 867700000L,0,5,1);
LoRaBee.configChFreq(7, 867900000L,0,5,1);

Finally, the message containing the sensor values is sent in an unconfirmed uplink message:

https://www.arduino.cc/en/guide/libraries
https://wiki.lahoud.fr/lib/exe/fetch.php?media=test-lorawan-combined-loraserver-example.zip
https://wiki.lahoud.fr/lib/exe/fetch.php?media=lorawan102-20161012_1398_1.pdf

2025/09/18 12:20 3/8 Deploying an End-to-End LoRaWAN Platform

wikiroute - https://wiki.lahoud.fr/

LoRaBee.send(1, (uint8_t*)message.c_str(), message.length())

1.2 Arduino with Dragino Shield

1.2.1 Periodic Message Sending

Devices in the LoRaWAN platform can also be implemented on Arduino boards with Dragino shields.
The combined module as well as the basic configuration steps are presented in Simple Prototype of
LoRa Communications. Similarly to the Autonomo device, you can download the following sketch

test-loraserver-comb-loraserver-dragino.zip
and modify it according to your preferences. Below you can find somme commented extracts of the
sketch.

The pin mapping corresponds to the Dragino electronic schematic:

const lmic_pinmap lmic_pins = {
 .nss = 10,
 .rxtx = LMIC_UNUSED_PIN,
 .rst = 9,
 .dio = {2, 6, 7},
};

The send function is rescheduled TX_INTERVAL seconds after each transmission complete event:

 case EV_TXCOMPLETE:
 Serial.println(F("EV_TXCOMPLETE (includes waiting for RX
windows)"));
 if(LMIC.dataLen) {
 // data received in rx slot after tx
 Serial.print(F("Data Received: "));
 Serial.write(LMIC.frame+LMIC.dataBeg, LMIC.dataLen);
 Serial.println();
 }
 // Schedule next transmission
 os_setTimedCallback(&sendjob,
os_getTime()+sec2osticks(TX_INTERVAL), do_send);
 break;

The send function is initially scheduled here:

do_send(&sendjob);

The message containing the sensor values is transmitted on one of the radio channels (as in the
Autonomo case):

LMIC_setTxData2(1, (uint8_t*) buffer, message.length() , 0);

https://wiki.lahoud.fr/lib/exe/fetch.php?media=test-loraserver-comb-loraserver-dragino.zip
https://wiki.lahoud.fr/lib/exe/fetch.php?media=test-loraserver-comb-loraserver-dragino.zip
https://wiki.lahoud.fr/doku.php?id=simple_lora_prototype
https://wiki.lahoud.fr/doku.php?id=simple_lora_prototype

Last update: 2021/08/28 09:50 deploying_lorawan https://wiki.lahoud.fr/doku.php?id=deploying_lorawan

https://wiki.lahoud.fr/ Printed on 2025/09/18 12:20

The adaptive data rate is not supported, and the spreading factor is configured as follows:

LMIC_setDrTxpow(DR_SF7,14);

1.2.2 Triggered Message Sending

You can also find another example of sketch to download:

test-loraserver-moisture-on-move.ino.zip
. Here the message sending is not periodic but related to an event. For example, an infrared sensor
detects a movement and triggers a signal for the device to send a LoRaWAN message. Note also that
the join method used in this second sketch is Activation by Personalisation (ABP): the device address,
the network session key, and the application session key are directly configured on the device.

2. Gateways

2.1 Single Channel Gateway

The single channel gateway includes a LoRa transmission module (Dragino Shield) connected to a
Raspberry Pi (2 or 3) as shown in Figure 2. Communication between the two modules is done over an
SPI interface.

Figure 2. LoRa single channel gateway

In order to assemble the gateway, start by making the wire connections: the connection pins are
identified in Figures 3 and 4.

https://wiki.lahoud.fr/lib/exe/fetch.php?media=test-loraserver-moisture-on-move.ino.zip
https://wiki.lahoud.fr/lib/exe/fetch.php?media=2017-01-04_11.34.54.jpg
https://wiki.lahoud.fr/lib/exe/fetch.php?media=2017-01-04_11.34.54.jpg

2025/09/18 12:20 5/8 Deploying an End-to-End LoRaWAN Platform

wikiroute - https://wiki.lahoud.fr/

Figure 3. Dragino pin mapping

Figure 4. Raspberry pi 3 pins

Connect the Raspberry Pi to the Internet and install the packet forwarding software. The source code
of the single channel packet forwarder is available on:
https://github.com/samerlahoud/single_chan_pkt_fwd. In order to install it, you need to:

Enable SPI on the Raspberry Pi using raspi-config
Download and unzip the source code:

wget https://github.com/hallard/single_chan_pkt_fwd/archive/master.zip
unzip master.zip

Install the wiring library:

apt-get update
apt-get install wiring

Compile the packet forwarder:

https://wiki.lahoud.fr/lib/exe/fetch.php?media=schema-single-channel-pi3.png
https://wiki.lahoud.fr/lib/exe/fetch.php?media=schema-single-channel-pi3.png
https://wiki.lahoud.fr/lib/exe/fetch.php?media=schema-pins-pi3.png
https://wiki.lahoud.fr/lib/exe/fetch.php?media=schema-pins-pi3.png
https://github.com/samerlahoud/single_chan_pkt_fwd

Last update: 2021/08/28 09:50 deploying_lorawan https://wiki.lahoud.fr/doku.php?id=deploying_lorawan

https://wiki.lahoud.fr/ Printed on 2025/09/18 12:20

make all

For gcc version 4.6.3, a compilation error results in the following warning unrecognized command
line option '-std=c++11'. Replace -std=c++11 by -std=c++0x in the Makefile and recompile:

CFLAGS = -std=c++0x -c -Wall -I include/

Now, you need to configure the single channel packet forwarder. This is done in the

global_config.json.zip
configuration file. Particularly, you need to choose the channel, the spreading factor, the pins for SPI
communication, and the address of the backend server. Note that you can specify multiple backends
for testing purposes.

Finally, you can run the packet forwarder as root!

nohup ./single_chan_pkt_fwd &

2.2 Kerlink IoT Station

more /etc/sysconfig/network

activates eth0 at startup
ETHERNET=yes
claims dhcp request on eth0
ETHDHCP=yes

Selector operator APN
GPRSAPN=gprs.touch.com.lb
Enter pin code if activated
GPRSPIN=0000
Update /etc/resolv.conf to get dns facilities
GPRSDNS=yes
PAP authentication
GPRSUSER=
GPRSPASSWORD=

Bearers priority order
#BEARERS_PRIORITY="eth0,ppp0,eth1"
BEARERS_PRIORITY="ppp0,eth0,eth1"

./gps-pkt-fwd.sh > /dev/null &

 3270 root 2548 S /bin/sh ./gps-pkt-fwd.sh
 3288 root 34908 S ./gps_pkt_fwd

/etc/init.d/gprs start

[root@Wirgrid_0b03008c demo_gps_loramote]# /etc/init.d/gprs status

https://wiki.lahoud.fr/lib/exe/fetch.php?media=global_config.json.zip

2025/09/18 12:20 7/8 Deploying an End-to-End LoRaWAN Platform

wikiroute - https://wiki.lahoud.fr/

pppd (pid 5273) is running...
Session: Rx=58, Tx=163
Globals: Rx=1130457, Tx=1195592
Sum: Rx=1130515, Tx=1195755
[root@Wirgrid_0b03008c demo_gps_loramote]#

3. Backend

3.1 Loraserver

The Loraserver has a web interface for configuring the applications and devices on the platform. Full
details for installing the software are provided on https://www.loraserver.io.

Figure 5. Loraserver web interface

Start by creating and application as in Figure 5. Then create a node in this application and provide the
following information:

A unique node name
The node description
A unique device EUI on 64 bits: Random identifiers can be generated on
https://www.random.org/bytes/
The application EUI on 64 bits: this can be a common identifier for all nodes using the same
application.
A unique application key on 128 bits

In order to enable OTAA join method, you have to make sure that the ABP activation button is
unchecked.

3.2 The Things Network

4. Applications

4.1 mqtt-spy

mqtt-spy is an open source utility intended to help you with monitoring activity on MQTT topics. It has
been designed to deal with high volumes of messages, as well as occasional publications. mqtt-spy is
a JavaFX application, so it should work on any operating system with an appropriate version of Java 8
installed. A very useful tutorial is available on https://github.com/eclipse/paho.mqtt-spy/wiki. You can
use mqtt-spy to debug the messages received from the LoRaWAN devices. For this, you should
download the software tool from https://github.com/eclipse/paho.mqtt-spy/wiki. After starting the
application, configure a new connection to the MQTT broker by simply adding the IP address of the
broker in the Server URI field. Now you can subscribe to any MQTT topic. If you want to receive all
messages arriving at the backend, you can use the generic topic #. You can also limit to the topic

https://www.loraserver.io
https://wiki.lahoud.fr/lib/exe/fetch.php?media=app-loraserver.png
https://wiki.lahoud.fr/lib/exe/fetch.php?media=app-loraserver.png
https://www.random.org/bytes/
https://github.com/eclipse/paho.mqtt-spy/wiki
https://github.com/eclipse/paho.mqtt-spy/wiki

Last update: 2021/08/28 09:50 deploying_lorawan https://wiki.lahoud.fr/doku.php?id=deploying_lorawan

https://wiki.lahoud.fr/ Printed on 2025/09/18 12:20

including the messages of any specific device:
application/APPLICATION_ID/node/DEVICE_EUI/rx.

4.2 Emoncms

From:
https://wiki.lahoud.fr/ - wikiroute

Permanent link:
https://wiki.lahoud.fr/doku.php?id=deploying_lorawan

Last update: 2021/08/28 09:50

https://wiki.lahoud.fr/
https://wiki.lahoud.fr/doku.php?id=deploying_lorawan

	Deploying an End-to-End LoRaWAN Platform
	1. Devices
	1.1 Autonomo with LoRaBee
	1.2 Arduino with Dragino Shield
	1.2.1 Periodic Message Sending
	1.2.2 Triggered Message Sending

	2. Gateways
	2.1 Single Channel Gateway
	2.2 Kerlink IoT Station

	3. Backend
	3.1 Loraserver
	3.2 The Things Network

	4. Applications
	4.1 mqtt-spy
	4.2 Emoncms

