wikiroute

networking recipes

User Tools

Site Tools


esib_iot_challenge

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
Next revisionBoth sides next revision
esib_iot_challenge [2017/05/17 09:36] – [2.1. Arduino with Dragino Shield] sameresib_iot_challenge [2017/05/17 10:25] samer
Line 23: Line 23:
  
 ==== -. Arduino with Dragino Shield ==== ==== -. Arduino with Dragino Shield ====
-=== -. Periodic Message Sending === 
  
 Devices in the LoRaWAN platform are implemented on Arduino boards with Dragino shields. The combined module as well as the basic configuration steps are presented in [[simple_lora_prototype|Simple Prototype of LoRa Communications]]. You can download the following sketch {{ :test-loraserver-comb-loraserver-dragino.zip |}} and modify it according to your preferences. Below you can find somme commented extracts of the sketch. Devices in the LoRaWAN platform are implemented on Arduino boards with Dragino shields. The combined module as well as the basic configuration steps are presented in [[simple_lora_prototype|Simple Prototype of LoRa Communications]]. You can download the following sketch {{ :test-loraserver-comb-loraserver-dragino.zip |}} and modify it according to your preferences. Below you can find somme commented extracts of the sketch.
Line 57: Line 56:
 </code> </code>
  
-The message containing the sensor values is transmitted on one of the radio channels (as in the Autonomo case):+The message containing the sensor values is transmitted on one of the radio channels:
 <code c++> <code c++>
 LMIC_setTxData2(1, (uint8_t*) buffer, message.length() , 0); LMIC_setTxData2(1, (uint8_t*) buffer, message.length() , 0);
-</code> 
- 
-The adaptive data rate is not supported, and the spreading factor is configured as follows:  
-<code c++> 
-LMIC_setDrTxpow(DR_SF7,14); 
 </code> </code>
  
Line 70: Line 64:
  
 You can also find another example of sketch to download: {{ :test-loraserver-moisture-on-move.ino.zip |}}. Here the message sending is not periodic but related to an event. For example, an infrared sensor detects a movement and triggers a signal for the device to send a LoRaWAN message. Note also that the join method used in this second sketch is Activation by Personalisation (ABP): the device address, the network session key, and the application session key are directly configured on the device. You can also find another example of sketch to download: {{ :test-loraserver-moisture-on-move.ino.zip |}}. Here the message sending is not periodic but related to an event. For example, an infrared sensor detects a movement and triggers a signal for the device to send a LoRaWAN message. Note also that the join method used in this second sketch is Activation by Personalisation (ABP): the device address, the network session key, and the application session key are directly configured on the device.
-===== -. Gateways ===== 
-==== -. Single Channel Gateway ==== 
- 
-The single channel gateway includes a LoRa transmission module (Dragino Shield) connected to a Raspberry Pi (2 or 3) as shown in Figure 2. Communication between the two modules is done over an SPI interface. 
- 
-[{{ :2017-01-04_11.34.54.jpg?direct&300 |Figure 2. LoRa single channel gateway}}]  
- 
-In order to assemble the gateway, start by making the wire connections: the connection pins are identified in Figures 3 and 4. 
-[{{ :schema-single-channel-pi3.png?direct&300 |Figure 3. Dragino pin mapping}}] 
-[{{ :schema-pins-pi3.png?direct&300 |Figure 4. Raspberry pi 3 pins}}] 
- 
-Connect the Raspberry Pi to the Internet and install the packet forwarding software. The source code of the single channel packet forwarder is available on: [[https://github.com/samerlahoud/single_chan_pkt_fwd]]. In order to install it, you need to: 
-  * Enable SPI on the Raspberry Pi using raspi-config 
-  * Download and unzip the source code: 
- 
-<code bash> 
-wget https://github.com/hallard/single_chan_pkt_fwd/archive/master.zip 
-unzip master.zip 
-</code> 
- 
-  * Install the wiring library: 
- 
-<code bash> 
-apt-get update 
-apt-get install wiring 
-</code> 
- 
-Compile the packet forwarder: 
-<code bash> 
-make all 
-</code> 
- 
-For gcc version 4.6.3, a compilation error results in the following warning ''unrecognized command line option '-std=c++11'''. Replace ''-std=c++11'' by ''-std=c++0x'' in the Makefile and recompile: 
-<code> 
-CFLAGS = -std=c++0x -c -Wall -I include/ 
-</code> 
- 
-Now, you need to configure the single channel packet forwarder. This is done in the {{ :global_config.json.zip |}} configuration file. Particularly, you need to choose the channel, the spreading factor, the pins for SPI communication, and the address of the backend server. Note that you can specify multiple backends for testing purposes. 
- 
-Finally, you can run the packet forwarder as root! 
- 
-<code bash> 
-nohup ./single_chan_pkt_fwd & 
-</code> 
-==== -. Kerlink IoT Station ==== 
- 
-<code> 
-# activates eth0 at startup 
-ETHERNET=yes 
-# claims dhcp request on eth0 
-ETHDHCP=yes 
- 
-# Selector operator APN 
-GPRSAPN=gprs.touch.com.lb 
-# Enter pin code if activated 
-GPRSPIN=0000 
-# Update /etc/resolv.conf to get dns facilities 
-GPRSDNS=yes 
-# PAP authentication 
-GPRSUSER= 
-GPRSPASSWORD= 
- 
-# Bearers priority order 
-#BEARERS_PRIORITY="eth0,ppp0,eth1" 
-BEARERS_PRIORITY="ppp0,eth0,eth1" 
-</code> 
- 
-<code> 
-./gps-pkt-fwd.sh > /dev/null & 
-</code> 
- 
-<code> 
- 3270 root      2548 S    /bin/sh ./gps-pkt-fwd.sh 
- 3288 root     34908 S    ./gps_pkt_fwd 
-</code> 
- 
-<code> 
-/etc/init.d/gprs start 
- 
-[root@Wirgrid_0b03008c demo_gps_loramote]# /etc/init.d/gprs  status 
-pppd (pid 5273) is running... 
-Session: Rx=58, Tx=163 
-Globals: Rx=1130457, Tx=1195592 
-Sum:     Rx=1130515, Tx=1195755 
-[root@Wirgrid_0b03008c demo_gps_loramote]#  
-</code> 
  
 ===== -. Backend ===== ===== -. Backend =====
esib_iot_challenge.txt · Last modified: 2021/08/28 09:53 by samer