wikiroute

networking recipes

User Tools

Site Tools


esib_iot_challenge

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
Next revisionBoth sides next revision
esib_iot_challenge [2017/05/17 09:11] – created sameresib_iot_challenge [2017/05/17 22:55] – [3. Devices] samer
Line 1: Line 1:
 ====== ESIB IoT Challenge ====== ====== ESIB IoT Challenge ======
  
-Starting from September 2016Saint-Joseph University of Beirut (USJ) will be deploying the first academic [[http://www.semtech.com/wireless-rf/internet-of-things/what_is_lora.html | LoRa]] network in LebanonThe network will support monitoring of micro-climate conditions in vineyardsHere below you can find a detailed description of the experimental platform implementing an end-to-end LoRaWAN solution. The platform consists of the following elements:+Welcome to the ESIB IoT Challenge. In this challengeyou will be designing and prototyping the first IoT services based on a LoRaWAN network. 
 + 
 +===== -. Platform ===== 
 + 
 +During this challenge, you will benefit from the first experimental platform implementing an end-to-end LoRaWAN solution in Lebanon. The platform consists of the following elements:
  
   * Devices that communicate to one or more gateways via a wireless interface using single hop LoRa and implementing the LoRaWAN protocol. These devices are physically connected to sensors that generate data.    * Devices that communicate to one or more gateways via a wireless interface using single hop LoRa and implementing the LoRaWAN protocol. These devices are physically connected to sensors that generate data. 
Line 9: Line 13:
  
 [{{ :lora-pilot-architecture.png?direct&650 | Figure 1. Architecture of the LoRaWAN Platform}}] [{{ :lora-pilot-architecture.png?direct&650 | Figure 1. Architecture of the LoRaWAN Platform}}]
-===== -. Devices ===== 
-==== -. Autonomo with LoRaBee ==== 
  
-Starting with the devices in the LoRaWAN platform, we will use an [[http://support.sodaq.com/sodaq-one/autonomо/|Autonomo]] board with a LoRaBee Microchip RN2483 moduleAccording to [[http://shop.sodaq.com]], Autonomo is a matchbox-sized powerhouse which uses the new Atmel Cortex M0+ 32bit micro controllerOne advantage of such device is that it can be powered by a smartphone-sized solar panel.+<WRAP center round help 100%> 
 +  * Where is the LoRa modulation implemented on the platform? 
 +  * What are the advantages of the LoRa modulation? 
 +  * How LoRa is compatible with LPWAN requirements and constraints? 
 +  * What is LoRaWAN? What is the difference between LoRaWAN and LoRa? 
 +  * Illustrate the protocol stacks on the LoRaWAN platform. 
 +  * What elements are IP enabled in the platform? What do you think about IP support in IoT?  
 +</WRAP> 
 +===== -. Backend ===== 
 +In a LoRaWAN network, the devices communicate with a Network Server through the gatewayThe backend installed in the platform is based on an open-source LoRaWAN network-server https://www.loraserver.io. A web interface is available for configuring the applications and devices on the platform (https://212.98.XX.XX:8080).
  
-In order to configure the Autonomo with LoRaBee device, you should follow these steps:+[{{ :app-loraserver.png?direct&600 | Figure 2. Loraserver web interface}}]
  
-    Verify that you have the latest Arduino IDE from [[https://www.arduino.cc/en/Main/Software]] on your computer. +Start by choosing the application named ''NTRE-1617'' to create a new node. You should provide the following information
-    - Install the board files as noted in [[http://support.sodaq.com/sodaq-one/autonomо/getting-started-autonomo/]]. +  * A unique node name''NTRE-GX'' (where ''X'' is your group number) 
-    - Add the following library {{ :sodaq_rn2483_2.zip |}} to your Arduino IDE as explained in [[https://www.arduino.cc/en/guide/libraries]]. +  * The node description 
- +  * A unique device EUI on 64 bitsRandom identifiers can be generated on [[https://www.random.org/bytes/]] 
-Now you are ready to write a sketch for the device. Here is one example sketch {{ :test-lorawan-combined-loraserver-example.zip |}} where the autonomo is connected to three sensors: light, moisture, and temperature. Let us analyse some extracts of the code+  * The application EUI on 64 bits''0badde1cafe2deca''
- +  * A unique application key on 128 bits also obtained by random generation.
-In this part, you should put the keys for Over-The-Air Activation (OTAA) as explained in the {{ :lorawan102-20161012_1398_1.pdf |LoRaWAN specification}}:  +
-<code c++> +
-// USE YOUR OWN KEYS! +
-const uint8_t devEUI[8] = +
-{ }; +
- +
-// USE YOUR OWN KEYS! +
-const uint8_t appEUI[8] = +
-{ }; +
- +
-const uint8_t appKey[16] = +
-{ }; +
-</code>+
    
-The pins for connecting the sensors are specified in these declarations (A0 for light sensorA2 for moisture sensorand D0 temperature sensor): +Make sure that the ''ABP activation'' button is unchecked, in order to enable OTAA join method. Finallyin advanced network settingschoose the receive window RX2.
-<code c++> +
-int light_pin = A0; +
-int moisture_pin = A2;  +
-int temperature_pin = 0; +
-int temperature_vcc_pin = 1; +
-int moisture_vcc_pin = 8; +
-int moisture_gnd_pin = 7; +
-</code>+
  
-The OTAA method is used for joining the network and Adaptive Data Rate (ADR) is activated: +<WRAP left round help 100%> 
-<code c++> +  * What does the application EUI mean? How is it used in LoRaWAN? 
-LoRaBee.initOTA(loraSerial, devEUI, appEUI, appKey, true) +  * What does the application key mean? How is it used in LoRaWAN security? 
-</code>+  * Compare the two device activation methods used in LoRaWAN by giving the advantages and inconvenients. 
 +  * What is the difference between the two receive windows in LoRaWAN? What are they used for?   
 +</WRAP> 
 +===== -. Devices =====
  
-Eight different sub channels are activated with data rate ranges from 0 to 5: +Devices in the LoRaWAN platform are implemented on Arduino boards with Dragino shieldsThe combined module as well as the basic configuration steps are presented in [[simple_lora_prototype|Simple Prototype of LoRa Communications]]
-<code c++> +
-LoRaBee.configChFreq(0, 868100000L,0,5,1); +
-LoRaBee.configChFreq(1, 868300000L,0,5,1);  +
-LoRaBee.configChFreq(2, 868500000L,0,5,1); +
-LoRaBee.configChFreq(3, 867100000L,0,5,1); +
-LoRaBee.configChFreq(4, 867300000L,0,5,1); +
-LoRaBee.configChFreq(5, 867500000L,0,5,1); +
-LoRaBee.configChFreq(6, 867700000L,0,5,1); +
-LoRaBee.configChFreq(7, 867900000L,0,5,1); +
-</code>+
  
-Finally, the message containing the sensor values is sent in an unconfirmed uplink message: +Start by verifying the installation on your PC of the latest Arduino IDE. Drop the Arduino LMIC library in the corresponding folderThese tools are provided at the beginning of the challengeOpen the example sketch ''example-code-ntre-iot-challenge.ino'' with Arduino IDE.
-<code c++> +
-LoRaBee.send(1, (uint8_t*)message.c_str(), message.length()) +
-</code+
-==== -. Arduino with Dragino Shield ==== +
-=== -Periodic Message Sending ===+
  
-Devices in the LoRaWAN platform can also be implemented on Arduino boards with Dragino shields. The combined module as well as the basic configuration steps are presented in [[simple_lora_prototype|Simple Prototype of LoRa Communications]]Similarly to the Autonomo device, you can download the following sketch {{ :test-loraserver-comb-loraserver-dragino.zip |}} and modify it according to your preferencesBelow you can find somme commented extracts of the sketch.+<WRAP left round help 100%> 
 +  * Give the characteristics of the Arduino you are using: model, number of pins, type of pins, memory sizes, etc. 
 +  * Give the main characteristics of the LoRa shield from Dragino (www.dragino.com). 
 +  * What type of Antenna are you using? Explain the corresponding characteristics 
 +</WRAP>
  
-The pin mapping corresponds to the Dragino electronic schematic: +Now you should configure your device with the same identifiers ''APPEUI''''DEVEUI''and ''APPKEY'' as in the backend:
-<code c++> +
-const lmic_pinmap lmic_pins = { +
-    .nss = 10, +
-    .rxtx = LMIC_UNUSED_PIN, +
-    .rst = 9, +
-    .dio = {2, 6, 7}, +
-}; +
-</code>+
  
-The send function is rescheduled TX_INTERVAL seconds after each transmission complete event:  
 <code c++> <code c++>
-        case EV_TXCOMPLETE: +static const u1_t PROGMEM APPEUI[8]= { }
-            Serial.println(F("EV_TXCOMPLETE (includes waiting for RX windows)"))+void os_getArtEui (u1_t* buf) { memcpy_P(bufAPPEUI, 8);}
-            if(LMIC.dataLen) { +
-                // data received in rx slot after tx +
-                Serial.print(F("Data Received: ")); +
-                Serial.write(LMIC.frame+LMIC.dataBegLMIC.dataLen); +
-                Serial.println(); +
-            } +
-            // Schedule next transmission +
-            os_setTimedCallback(&sendjob, os_getTime()+sec2osticks(TX_INTERVAL), do_send); +
-            break; +
-</code>+
  
-The send function is initially scheduled here: +// This should also be in little endian format, see above. 
-<code c++> +static const u1_t PROGMEM DEVEUI[8]= { }; 
-do_send(&sendjob); +void os_getDevEui (u1_t* buf) { memcpy_P(buf, DEVEUI, 8);}
-</code>+
  
-The message containing the sensor values is transmitted on one of the radio channels (as in the Autonomo case): +static const u1_t PROGMEM APPKEY[16] = { }; 
-<code c++> +void os_getDevKey (u1_tbuf{  memcpy_P(bufAPPKEY16);}
-LMIC_setTxData2(1, (uint8_t*) buffermessage.length() 0);+
 </code> </code>
  
-The adaptive data rate is not supported, and the spreading factor is configured as follows:  +<WRAP left round tip 100%> 
-<code c++> +Note that the device and application identifiers should be in little endian format, while the application key is in big endian format. For example, ''0badde1cafe2deca'' is written as ''0xCA0xDE, 0xE2, 0xAF, 0x1C, 0xDE, 0xAD, 0x0B'' in the Arduino sketch. 
-LMIC_setDrTxpow(DR_SF7,14); +</WRAP>
-</code>+
  
-=== -Triggered Message Sending ===+Let us analyze to radio parameters in the sketch by answering the following questions.
  
-You can also find another example of sketch to download: {{ :test-loraserver-moisture-on-move.ino.zip |}}. Here the message sending is not periodic but related to an event. For examplean infrared sensor detects a movement and triggers a signal for the device to send a LoRaWAN message. Note also that the join method used in this second sketch is Activation by Personalisation (ABP): the device address, the network session key, and the application session key are directly configured on the device. +<WRAP left round help 100%> 
-===== -. Gateways ===== +  * In the setup functionwhich channels are activated on the device?  
-==== -. Single Channel Gateway ====+  * What are the different spreading factors on each channel? 
 +  * What is the regulation on the radio channels in LoRa? 
 +</WRAP>
  
-The single channel gateway includes LoRa transmission module (Dragino Shield) connected to a Raspberry Pi (2 or 3as shown in Figure 2. Communication between the two modules is done over an SPI interface.+The LMIC library defines set of events corresponding to the protocol machine state. These events appear in the ''onEvent()'' function.
  
-[{{ :2017-01-04_11.34.54.jpg?direct&300 |Figure 2. LoRa single channel gateway}}] +<WRAP left round help 100%> 
 +  * What is the difference between the JOINING and the JOINED events 
 +  * When is the EV_TXCOMPLETE event called? 
 +</WRAP>
  
-In order to assemble the gateway, start by making the wire connections: the connection pins are identified in Figures 3 and 4. +Finally let us look at the message sending on the device.
-[{{ :schema-single-channel-pi3.png?direct&300 |Figure 3. Dragino pin mapping}}] +
-[{{ :schema-pins-pi3.png?direct&300 |Figure 4Raspberry pi 3 pins}}]+
  
-Connect the Raspberry Pi to the Internet and install the packet forwarding software. The source code of the single channel packet forwarder is available on: [[https://github.com/samerlahoud/single_chan_pkt_fwd]]. In order to install it, you need to: +<WRAP left round help 100%> 
-  * Enable SPI on the Raspberry Pi using raspi-config +  * What is the function for sending messages on the device? How it is called? 
-  * Download and unzip the source code:+  * What is the period of message sending? Explain the implementation choice
 +  * Is this period guaranteed according to the LoRaWAN specification? 
 +</WRAP>
  
-<code bash> +Now you are ready to compile the sketch and upload it to the LoRaWAN deviceConnect the device a USB port on your PC, choose the board type as ''Arduino/Genuino Mega 2560'' and select the corresponding portCompile and upload!
-wget https://github.com/hallard/single_chan_pkt_fwd/archive/master.zip +
-unzip master.zip +
-</code>+
  
-  * Install the wiring library:+<WRAP left round tip 100%> 
 +For Arduino Mega 2560, additional drivers can be installed on Windows from http://wch.cn/download/CH341SER_ZIP.html. 
 +</WRAP>
  
-<code bash> +Open the serial monitor in the Arduino IDE at 115200 baud and analyse the debug messages.
-apt-get update +
-apt-get install wiring +
-</code>+
  
-Compile the packet forwarder: +<WRAP left round help 100%
-<code bash+  * What is the radio transmit parameters of the captured debug messages? 
-make all +  * What is the radio receive parameters of the captured debug messages for the two receive windows? 
-</code>+</WRAP>
  
-For gcc version 4.6.3, a compilation error results in the following warning ''unrecognized command line option '-std=c++11'''Replace ''-std=c++11'' by ''-std=c++0x'' in the Makefile and recompile: +Getting back to the backend, you can monitor some important information related to your deviceClick on the corresponding node session.
-<code> +
-CFLAGS = -std=c++0x -c -Wall -I include/ +
-</code>+
  
-Now, you need to configure the single channel packet forwarderThis is done in the {{ :global_config.json.zip |}} configuration fileParticularlyyou need to choose the channel, the spreading factor, the pins for SPI communicationand the address of the backend serverNote that you can specify multiple backends for testing purposes.+<WRAP left round help 100%> 
 +  * What are the different fields that appear in the node session corresponding to you device? 
 +  * Explain how each field is created according to the LoRaWAN specification. 
 +  * What are the different counters visible at the backend? Explain how they get incremented and how they are used. 
 +</WRAP> 
 +===== -Applications ===== 
 +mqtt-spy is an open source utility intended to help you with monitoring activity on MQTT topicsIt has been designed to deal with high volumes of messagesas well as occasional publications. mqtt-spy is a JavaFX application, so it should work on any operating system with an appropriate version of Java 8 installed. A very useful tutorial is available on [[https://github.com/eclipse/paho.mqtt-spy/wiki]]. 
 +You can use mqtt-spy to debug the messages received from the LoRaWAN devices. The tool is provided at the beginning of the challenge. After starting the applicationconfigure a new connection to the MQTT broker by simply adding the IP address of the broker in the ''Server URI'' fieldNow you can subscribe to any MQTT topic. If you want to receive all messages arriving at the backend, you can use the generic topic ''#''. You can also limit to the topic including the messages of any specific device: ''application/APPLICATION_ID/node/DEVICE_EUI/rx''
  
-Finally, you can run the packet forwarder as root!+<WRAP left round help 100%> 
 +  * Summarize the concepts and functionalities of the MQTT protocol. 
 +  * What are the possible strengths and weaknesses in terms of security of MQTT? 
 +  * What are the different types of topics used by the backend? Explain. 
 +  * Explain the different fields in a captured MQTT message received from you device.  
 +</WRAP>
  
-<code bash+<WRAP left round tip 100%
-nohup ./single_chan_pkt_fwd & +The payload received by the MQTT client is decrypted but encoded in Base64. You should decode it to get the original message.  
-</code> +</WRAP>
-==== -. Kerlink IoT Station ====+
  
-<code> +===== -. The Challenges =====
-# activates eth0 at startup +
-ETHERNET=yes +
-# claims dhcp request on eth0 +
-ETHDHCP=yes+
  
-# Selector operator APN +==== -. The End-to-End Challenge ==== 
-GPRSAPN=gprs.touch.com.lb +==== -. The Downlink Challenge ==== 
-# Enter pin code if activated +==== -. The Radio Challenge ==== 
-GPRSPIN=0000 +==== -. The Sensor Challenge ====
-# Update /etc/resolv.conf to get dns facilities +
-GPRSDNS=yes +
-# PAP authentication +
-GPRSUSER= +
-GPRSPASSWORD= +
- +
-# Bearers priority order +
-#BEARERS_PRIORITY="eth0,ppp0,eth1" +
-BEARERS_PRIORITY="ppp0,eth0,eth1" +
-</code> +
- +
-<code> +
-./gps-pkt-fwd.sh > /dev/null & +
-</code> +
- +
-<code> +
- 3270 root      2548 S    /bin/sh ./gps-pkt-fwd.sh +
- 3288 root     34908 S    ./gps_pkt_fwd +
-</code> +
- +
-<code> +
-/etc/init.d/gprs start +
- +
-[root@Wirgrid_0b03008c demo_gps_loramote]# /etc/init.d/gprs  status +
-pppd (pid 5273) is running... +
-Session: Rx=58, Tx=163 +
-Globals: Rx=1130457, Tx=1195592 +
-Sum:     Rx=1130515, Tx=1195755 +
-[root@Wirgrid_0b03008c demo_gps_loramote]#  +
-</code> +
- +
-===== -. Backend ===== +
-==== -. Loraserver ==== +
- +
-The Loraserver has a web interface for configuring the applications and devices on the platform. Full details for installing the software are provided on [[https://www.loraserver.io]].  +
- +
-[{{ :app-loraserver.png?direct&400 | Figure 5. Loraserver web interface}}] +
- +
-Start by creating and application as in Figure 5. Then create a node in this application and provide the following information: +
-  * A unique node name +
-  * The node description +
-  * A unique device EUI on 64 bits: Random identifiers can be generated on [[https://www.random.org/bytes/]] +
-  * The application EUI on 64 bits: this can be a common identifier for all nodes using the same application. +
-  * A unique application key on 128 bits +
- +
-In order to enable OTAA join method, you have to make sure that the ''ABP activation'' button is unchecked.  +
- +
- +
-==== -. The Things Network ==== +
- +
-===== -. Applications ===== +
-==== -. mqtt-spy ==== +
- +
-mqtt-spy is an open source utility intended to help you with monitoring activity on MQTT topics. It has been designed to deal with high volumes of messages, as well as occasional publications. mqtt-spy is a JavaFX application, so it should work on any operating system with an appropriate version of Java 8 installed. A very useful tutorial is available on [[https://github.com/eclipse/paho.mqtt-spy/wiki]]. +
-You can use mqtt-spy to debug the messages received from the LoRaWAN devices. For this, you should download the software tool from [[https://github.com/eclipse/paho.mqtt-spy/wiki]]. After starting the application, configure a new connection to the MQTT broker by simply adding the IP address of the broker in the ''Server URI'' field. Now you can subscribe to any MQTT topic. If you want to receive all messages arriving at the backend, you can use the generic topic ''#''. You can also limit to the topic including the messages of any specific device: ''application/APPLICATION_ID/node/DEVICE_EUI/rx'' +
-==== -. Emoncms ====+
esib_iot_challenge.txt · Last modified: 2021/08/28 09:53 by samer