wikiroute

networking recipes

User Tools

Site Tools


deploying_lorawan

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
Next revisionBoth sides next revision
deploying_lorawan [2017/04/30 16:57] – [Deploying an End-to-End LoRaWAN Platform] samerdeploying_lorawan [2017/05/02 17:51] – [3.1. Loraserver] samer
Line 68: Line 68:
 </code> </code>
 ==== -. Arduino with Dragino Shield ==== ==== -. Arduino with Dragino Shield ====
 +=== -. Periodic Message Sending ===
  
-Devices in the LoRaWAN platform can also be implemented on Arduino boards with Dragino shields. The combined module as well as the basic configuration steps are presented in [[simple_lora_prototype|Simple Prototype of LoRa Communications]]. As for the Autonomo device, you can download the following sketch {{ :test-loraserver-comb-loraserver-dragino.zip |}} and modify it according to your preferences. Below you can find somme commented extracts of the sketch.+Devices in the LoRaWAN platform can also be implemented on Arduino boards with Dragino shields. The combined module as well as the basic configuration steps are presented in [[simple_lora_prototype|Simple Prototype of LoRa Communications]]. Similarly to the Autonomo device, you can download the following sketch {{ :test-loraserver-comb-loraserver-dragino.zip |}} and modify it according to your preferences. Below you can find somme commented extracts of the sketch.
  
 The pin mapping corresponds to the Dragino electronic schematic: The pin mapping corresponds to the Dragino electronic schematic:
Line 96: Line 97:
 </code> </code>
  
-This send function is initially scheduled here:+The send function is initially scheduled here:
 <code c++> <code c++>
 do_send(&sendjob); do_send(&sendjob);
Line 110: Line 111:
 LMIC_setDrTxpow(DR_SF7,14); LMIC_setDrTxpow(DR_SF7,14);
 </code> </code>
 +
 +=== -. Triggered Message Sending ===
 +
 +You can also find another example of sketch to download: {{ :test-loraserver-moisture-on-move.ino.zip |}}. Here the message sending is not periodic but related to an event. For example, an infrared sensor detects a movement and triggers a signal for the device to send a LoRaWAN message. Note also that the join method used in this second sketch is Activation by Personalisation (ABP): the device address, the network session key, and the application session key are directly configured on the device.
 ===== -. Gateways ===== ===== -. Gateways =====
 ==== -. Single Channel Gateway ==== ==== -. Single Channel Gateway ====
Line 147: Line 152:
 </code> </code>
  
-Now, you need to configure the single channel packet forwarder. This is done in the ''global_conf.json'' configuration file. Particularly, you need to choose the channel, the spreading factor, the pins for SPI communication, and the address of the backend server. Note that you can specify multiple backends for testing purposes. +Now, you need to configure the single channel packet forwarder. This is done in the {{ :global_config.json.zip |}} configuration file. Particularly, you need to choose the channel, the spreading factor, the pins for SPI communication, and the address of the backend server. Note that you can specify multiple backends for testing purposes.
- +
-<file | global_config.json> +
-+
-  "SX127x_conf": +
-  { +
-    "freq": 868100000, +
-    "spread_factor": 7, +
-    "pin_nss": 6, +
-    "pin_dio0": 7, +
-    "pin_rst": 0, +
-    "pin_led1":+
-  }, +
-  "gateway_conf": +
-  { +
-    "ref_latitude": 33.86576536772, +
-    "ref_longitude": 35.56378662935, +
-    "ref_altitude": 165, +
- +
-    "name": "ESIB SC Gateway", +
-    "email": "cimti@usj.edu.lb", +
-    "desc": "Dragino Single Channel Gateway on RPI", +
- +
-    "servers": +
-    [ +
-      { +
-        "address": "router.eu.thethings.network", +
-        "port": 1700, +
-        "enabled": true +
-      }, +
-      { +
-        "address": "212.98.137.194", +
-        "port": 1700, +
-        "enabled": true +
-      }, +
-      { +
-        "address": "172.17.17.129", +
-        "port": 1700, +
-        "enabled": false +
-      } +
-    ] +
-  } +
-+
-</file>+
  
 Finally, you can run the packet forwarder as root! Finally, you can run the packet forwarder as root!
Line 242: Line 204:
 ===== -. Backend ===== ===== -. Backend =====
 ==== -. Loraserver ==== ==== -. Loraserver ====
 +
 +The Loraserver has a web interface for configuring the applications and devices on the platform. Full details for installing the software are provided on [[https://www.loraserver.io]]. Start by creating and application as in the following figure.
 +
 +[{{ :app-loraserver.png?direct&400 | Figure 5. Loraserver web interface}}]
 ==== -. The Things Network ==== ==== -. The Things Network ====
  
 ===== -. Applications ===== ===== -. Applications =====
-==== -. MQTT spy ====+==== -. mqtt-spy ==== 
 + 
 +mqtt-spy is an open source utility intended to help you with monitoring activity on MQTT topics. It has been designed to deal with high volumes of messages, as well as occasional publications. mqtt-spy is a JavaFX application, so it should work on any operating system with an appropriate version of Java 8 installed. A very useful tutorial is available on [[https://github.com/eclipse/paho.mqtt-spy/wiki]]. 
 +You can use mqtt-spy to debug the messages received from the LoRaWAN devices. For this, you should download the software tool from [[https://github.com/eclipse/paho.mqtt-spy/wiki]]. After starting the application, configure a new connection to the MQTT broker by simply adding the IP address of the broker in the ''Server URI'' field. Now you can subscribe to any MQTT topic. If you want to receive all messages arriving at the backend, you can use the generic topic ''#''. You can also limit to the topic including the messages of any specific device: ''application/APPLICATION_ID/node/DEVICE_EUI/rx''
 ==== -. Emoncms ==== ==== -. Emoncms ====
deploying_lorawan.txt · Last modified: 2021/08/28 09:50 by samer