wikiroute

networking recipes

User Tools

Site Tools


deploying_lorawan

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
Next revisionBoth sides next revision
deploying_lorawan [2017/04/30 14:37] – [1.1. Autonomo with LoRaBee] samerdeploying_lorawan [2017/04/30 17:04] – [2.1. Single Channel Gateway] samer
Line 1: Line 1:
 ====== Deploying an End-to-End LoRaWAN Platform ====== ====== Deploying an End-to-End LoRaWAN Platform ======
  
-Starting from September 2016, Saint-Joseph University of Beirut (USJ) will be deploying the first academic [[http://www.semtech.com/wireless-rf/internet-of-things/what_is_lora.html | LoRa]] network in Lebanon. The network will support monitoring of micro-climate conditions in vineyards. Here below you can find a detailed description of the experimental platform implementing an end-to-end LoRaWAN solution.+Starting from September 2016, Saint-Joseph University of Beirut (USJ) will be deploying the first academic [[http://www.semtech.com/wireless-rf/internet-of-things/what_is_lora.html | LoRa]] network in Lebanon. The network will support monitoring of micro-climate conditions in vineyards. Here below you can find a detailed description of the experimental platform implementing an end-to-end LoRaWAN solution. The platform consists of the following elements:
  
-[{{ :e2e-lorawan.png?direct&750 | Figure 2Architecture of the LoRaWAN Platform}}]+  * Devices that communicate to one or more gateways via a wireless interface using single hop LoRa and implementing the LoRaWAN protocolThese devices are physically connected to sensors that generate data 
 +  * Gateways or base stations that forward frames between the devices and the network server. Gateways are connected to the network server via IP interfaces. 
 +  * A LoRAWAN backend that implements the network server functions and provides frame control and security. 
 +  * Applications that enable to visualize and store the sensor data obtained from the devices. 
  
 +[{{ :lora-pilot-architecture.png?direct&650 | Figure 2. Architecture of the LoRaWAN Platform}}]
 ===== -. Devices ===== ===== -. Devices =====
 ==== -. Autonomo with LoRaBee ==== ==== -. Autonomo with LoRaBee ====
Line 65: Line 69:
 ==== -. Arduino with Dragino Shield ==== ==== -. Arduino with Dragino Shield ====
  
-Devices in the LoRaWAN platform can also be used on Arduino boards with Dragino shields. The combined module as well as the basic configuration steps are presented in [[simple_lora_prototype|Simple Prototype of LoRa Communications]]. As for the Autonomo device, you can download the following sketch {{ :test-loraserver-comb-loraserver-dragino.zip |}} and modify it according to your preferences. Below you can find somme commented extracts of the sketch.+Devices in the LoRaWAN platform can also be implemented on Arduino boards with Dragino shields. The combined module as well as the basic configuration steps are presented in [[simple_lora_prototype|Simple Prototype of LoRa Communications]]. As for the Autonomo device, you can download the following sketch {{ :test-loraserver-comb-loraserver-dragino.zip |}} and modify it according to your preferences. Below you can find somme commented extracts of the sketch.
  
-Do not forget to insert you keys for the OTAA join method:+The pin mapping corresponds to the Dragino electronic schematic:
 <code c++> <code c++>
 const lmic_pinmap lmic_pins = { const lmic_pinmap lmic_pins = {
Line 77: Line 81:
 </code> </code>
  
-The send function is called upon after each transmission complete event: +The send function is rescheduled TX_INTERVAL seconds after each transmission complete event: 
 <code c++> <code c++>
         case EV_TXCOMPLETE:         case EV_TXCOMPLETE:
Line 92: Line 96:
 </code> </code>
  
-This is explicitly the send function of the message containing the sensor values (as in the Autonomo case):+This send function is initially scheduled here:
 <code c++> <code c++>
-LMIC_setTxData2(1, (uint8_t*) buffer, message.length() , 0);+do_send(&sendjob);
 </code> </code>
  
-You can modify the spreading factor here (Adaptive data rate is not supported):+The message containing the sensor values is transmitted on one of the radio channels (as in the Autonomo case):
 <code c++> <code c++>
-LMIC_setDrTxpow(DR_SF7,14);+LMIC_setTxData2(1(uint8_t*) buffer, message.length() , 0);
 </code> </code>
  
-Schedule the send function:+The adaptive data rate is not supported, and the spreading factor is configured as follows
 <code c++> <code c++>
-do_send(&sendjob);+LMIC_setDrTxpow(DR_SF7,14);
 </code> </code>
 ===== -. Gateways ===== ===== -. Gateways =====
Line 143: Line 147:
 </code> </code>
  
-Now, you need to configure the single channel packet forwarder. This is done in the ''global_conf.json'' configuration file. Particularly, you need to choose the channel, the spreading factor, the pins for SPI communication, and the address of the backend server. Note that you can specify multiple backends for testing purposes. +Now, you need to configure the single channel packet forwarder. This is done in the {{ :global_config.json.zip |}} configuration file. Particularly, you need to choose the channel, the spreading factor, the pins for SPI communication, and the address of the backend server. Note that you can specify multiple backends for testing purposes.
- +
-<file | global_config.json> +
-+
-  "SX127x_conf": +
-  { +
-    "freq": 868100000, +
-    "spread_factor": 7, +
-    "pin_nss": 6, +
-    "pin_dio0": 7, +
-    "pin_rst": 0, +
-    "pin_led1":+
-  }, +
-  "gateway_conf": +
-  { +
-    "ref_latitude": 33.86576536772, +
-    "ref_longitude": 35.56378662935, +
-    "ref_altitude": 165, +
- +
-    "name": "ESIB SC Gateway", +
-    "email": "cimti@usj.edu.lb", +
-    "desc": "Dragino Single Channel Gateway on RPI", +
- +
-    "servers": +
-    [ +
-      { +
-        "address": "router.eu.thethings.network", +
-        "port": 1700, +
-        "enabled": true +
-      }, +
-      { +
-        "address": "212.98.137.194", +
-        "port": 1700, +
-        "enabled": true +
-      }, +
-      { +
-        "address": "172.17.17.129", +
-        "port": 1700, +
-        "enabled": false +
-      } +
-    ] +
-  } +
-+
-</file>+
  
 Finally, you can run the packet forwarder as root! Finally, you can run the packet forwarder as root!
deploying_lorawan.txt · Last modified: 2021/08/28 09:50 by samer