wikiroute

networking recipes

User Tools

Site Tools


deploying_lorawan

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
Next revisionBoth sides next revision
deploying_lorawan [2016/12/20 10:55] samerdeploying_lorawan [2017/04/30 13:26] – [1.2. Arduino with Dragino Shield] samer
Line 5: Line 5:
 [{{ :e2e-lorawan.png?direct&750 | Figure 2. Architecture of the LoRaWAN Platform}}] [{{ :e2e-lorawan.png?direct&750 | Figure 2. Architecture of the LoRaWAN Platform}}]
  
-===== -. End-nodes =====+===== -. Devices =====
 ==== -. Autonomo with LoRaBee ==== ==== -. Autonomo with LoRaBee ====
  
 +For the devices in the LoRaWAN platform, we will use an Autonomo board with a LoRaBee holding the Microchip RN2483 module. According to [[http://shop.sodaq.com]], Autonomo is a matchbox-sized powerhouse which uses the new Atmel Cortex M0+ 32bit micro controller. One advantage of such device is that it can be powered by a smartphone-sized solar panel.
 +
 +In order to configure the Autonomo with LoRaBee device, you should follow these steps:
 +
 +    - Verify that you have the latest Arduino IDE from [[https://www.arduino.cc/en/Main/Software]] on your computer.
 +    - Install the board files as noted in [[http://support.sodaq.com/sodaq-one/autonomо/getting-started-autonomo/]].
 +    - Add the following library {{ :sodaq_rn2483_2.zip |}} to your Arduino IDE as explained in [[https://www.arduino.cc/en/guide/libraries]].
 +
 +Now you are ready to write a sketch for the device. Here is one example sketch {{ :test-lorawan-combined-loraserver-example.zip |}} where the autonomo is connected to three sensors: light, moisture, and temperature. Let us analyse some extracts of the code.
 +
 +In this part, you should put the keys for Over-The-Air Activation (OTAA) as explained in the LoRaWAN specification: 
 +<code c++>
 +// USE YOUR OWN KEYS!
 +const uint8_t devEUI[8] =
 +{ };
 +
 +// USE YOUR OWN KEYS!
 +const uint8_t appEUI[8] =
 +{ };
 +
 +const uint8_t appKey[16] =
 +{ };
 +</code>
 + 
 +The pins for connecting the sensors are specified in these declarations (A0 for light sensor, A2 for moisture sensor, and D0 temperature sensor):
 +<code c++>
 +int light_pin = A0;
 +int moisture_pin = A2; 
 +
 +int temperature_pin = 0;
 +int temperature_vcc_pin = 1;
 +int moisture_vcc_pin = 8;
 +int moisture_gnd_pin = 7;
 +</code>
 +
 +The OTAA method is used for joining the network and adaptive data rate is activated:
 +<code c++>
 +LoRaBee.initOTA(loraSerial, devEUI, appEUI, appKey, true)
 +</code>
 +
 +Eight different sub channels are activated with data rate ranges from 0 to 5:
 +<code c++>
 +LoRaBee.configChFreq(0, 868100000L,0,5,1);
 +LoRaBee.configChFreq(1, 868300000L,0,5,1); 
 +LoRaBee.configChFreq(2, 868500000L,0,5,1);
 +LoRaBee.configChFreq(3, 867100000L,0,5,1);
 +LoRaBee.configChFreq(4, 867300000L,0,5,1);
 +LoRaBee.configChFreq(5, 867500000L,0,5,1);
 +LoRaBee.configChFreq(6, 867700000L,0,5,1);
 +LoRaBee.configChFreq(7, 867900000L,0,5,1);
 +</code>
 +
 +Finally, the message is sent in an unconfirmed uplink message:
 +<code c++>
 +LoRaBee.send(1, (uint8_t*)message.c_str(), message.length())
 +</code>
 ==== -. Arduino with Dragino Shield ==== ==== -. Arduino with Dragino Shield ====
  
 +Devices in the LoRaWAN platform can also be used on Arduino boards with Dragino shields. The combined module as well as the basic configuration steps are presented in [[simple_lora_prototype|Simple Prototype of LoRa Communications]]. As for the Autonomo device, you can download the following sketch {{ :test-loraserver-comb-loraserver-dragino.zip |}} and modify it according to your preferences. Here are some extracts of the sketch:
 +
 +Do not forget to insert you keys for the OTAA join method.
 +
 +<code c++>
 +const lmic_pinmap lmic_pins = {
 +    .nss = 10,
 +    .rxtx = LMIC_UNUSED_PIN,
 +    .rst = 9,
 +    .dio = {2, 6, 7},
 +};
 +</code>
 +
 +<code c++>
 +        case EV_TXCOMPLETE:
 +            Serial.println(F("EV_TXCOMPLETE (includes waiting for RX windows)"));
 +            if(LMIC.dataLen) {
 +                // data received in rx slot after tx
 +                Serial.print(F("Data Received: "));
 +                Serial.write(LMIC.frame+LMIC.dataBeg, LMIC.dataLen);
 +                Serial.println();
 +            }
 +            // Schedule next transmission
 +            os_setTimedCallback(&sendjob, os_getTime()+sec2osticks(TX_INTERVAL), do_send);
 +            break;
 +</code>
 +
 +<code c++>
 +LMIC_setTxData2(1, (uint8_t*) buffer, message.length() , 0);
 +</code>
 +
 +<code c++>
 +LMIC_setDrTxpow(DR_SF7,14);
 +</code>
 +
 +<code c++>
 +do_send(&sendjob);
 +</code>
 ===== -. Gateways ===== ===== -. Gateways =====
 ==== -. Single Channel Gateway ==== ==== -. Single Channel Gateway ====
  
-The single channel gateway includes a LoRa transmission module (the Dragino Shield) connected to a Raspberry Pi (2 or 3). The connection pins are identified in Figures 2 and 3. Communication is done on an SPI communication interface.+The single channel gateway includes a LoRa transmission module (Dragino Shield) connected to a Raspberry Pi (2 or 3) as shown in Figure 1Communication between the two modules is done over an SPI interface. 
 + 
 +[{{ :2017-01-04_11.34.54.jpg?direct&300 |Figure 2. LoRa single channel gateway}}]  
 + 
 +In order to assemble the gateway, start by making the wire connections: the connection pins are identified in Figures 2 and 3.
 [{{ :schema-single-channel-pi3.png?direct&300 |Figure 2. Dragino pin mapping}}] [{{ :schema-single-channel-pi3.png?direct&300 |Figure 2. Dragino pin mapping}}]
 [{{ :schema-pins-pi3.png?direct&300 |Figure 3. Raspberry pi 3 pins}}] [{{ :schema-pins-pi3.png?direct&300 |Figure 3. Raspberry pi 3 pins}}]
  
 +Connect the Raspberry Pi to the Internet and install the packet forwarding software. The source code of the single channel packet forwarder is available on: [[https://github.com/samerlahoud/single_chan_pkt_fwd]]. In order to install it, you need to:
 +  * Enable SPI on the Raspberry Pi using raspi-config
 +  * Download and unzip the source code:
 +
 +<code bash>
 +wget https://github.com/hallard/single_chan_pkt_fwd/archive/master.zip
 +unzip master.zip
 +</code>
 +
 +  * Install the wiring library:
 +
 +<code bash>
 +apt-get update
 +apt-get install wiring
 +</code>
 +
 +Compile the packet forwarder:
 +<code bash>
 +make all
 +</code>
 +
 +For gcc version 4.6.3, a compilation error results in the following warning ''unrecognized command line option '-std=c++11'''. Replace ''-std=c++11'' by ''-std=c++0x'' in the Makefile and recompile:
 +<code>
 +CFLAGS = -std=c++0x -c -Wall -I include/
 +</code>
 +
 +Now, you need to configure the single channel packet forwarder. This is done in the ''global_conf.json'' configuration file. Particularly, you need to choose the channel, the spreading factor, the pins for SPI communication, and the address of the backend server. Note that you can specify multiple backends for testing purposes.
 +
 +<file | global_config.json>
 +{
 +  "SX127x_conf":
 +  {
 +    "freq": 868100000,
 +    "spread_factor": 7,
 +    "pin_nss": 6,
 +    "pin_dio0": 7,
 +    "pin_rst": 0,
 +    "pin_led1":4
 +  },
 +  "gateway_conf":
 +  {
 +    "ref_latitude": 33.86576536772,
 +    "ref_longitude": 35.56378662935,
 +    "ref_altitude": 165,
 +
 +    "name": "ESIB SC Gateway",
 +    "email": "cimti@usj.edu.lb",
 +    "desc": "Dragino Single Channel Gateway on RPI",
 +
 +    "servers":
 +    [
 +      {
 +        "address": "router.eu.thethings.network",
 +        "port": 1700,
 +        "enabled": true
 +      },
 +      {
 +        "address": "212.98.137.194",
 +        "port": 1700,
 +        "enabled": true
 +      },
 +      {
 +        "address": "172.17.17.129",
 +        "port": 1700,
 +        "enabled": false
 +      }
 +    ]
 +  }
 +}
 +</file>
 +
 +Finally, you can run the packet forwarder as root!
 +
 +<code bash>
 +nohup ./single_chan_pkt_fwd &
 +</code>
 ==== -. Kerlink IoT Station ==== ==== -. Kerlink IoT Station ====
 +
 +<code>
 +# activates eth0 at startup
 +ETHERNET=yes
 +# claims dhcp request on eth0
 +ETHDHCP=yes
 +
 +# Selector operator APN
 +GPRSAPN=gprs.touch.com.lb
 +# Enter pin code if activated
 +GPRSPIN=0000
 +# Update /etc/resolv.conf to get dns facilities
 +GPRSDNS=yes
 +# PAP authentication
 +GPRSUSER=
 +GPRSPASSWORD=
 +
 +# Bearers priority order
 +#BEARERS_PRIORITY="eth0,ppp0,eth1"
 +BEARERS_PRIORITY="ppp0,eth0,eth1"
 +</code>
 +
 +<code>
 +./gps-pkt-fwd.sh > /dev/null &
 +</code>
 +
 +<code>
 + 3270 root      2548 S    /bin/sh ./gps-pkt-fwd.sh
 + 3288 root     34908 S    ./gps_pkt_fwd
 +</code>
 +
 +<code>
 +/etc/init.d/gprs start
 +
 +[root@Wirgrid_0b03008c demo_gps_loramote]# /etc/init.d/gprs  status
 +pppd (pid 5273) is running...
 +Session: Rx=58, Tx=163
 +Globals: Rx=1130457, Tx=1195592
 +Sum:     Rx=1130515, Tx=1195755
 +[root@Wirgrid_0b03008c demo_gps_loramote]# 
 +</code>
  
 ===== -. Backend ===== ===== -. Backend =====
deploying_lorawan.txt · Last modified: 2021/08/28 09:50 by samer